Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Elife ; 122023 01 24.
Article in English | MEDLINE | ID: covidwho-2217489

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. Higher levels of SARS-CoV-2 anti-Spike antibodies are known to be associated with increased protection against future SARS-CoV-2 infection. However, variation in antibody levels and risk factors for lower antibody levels following each round of SARS-CoV-2 vaccination have not been explored across a wide range of socio-demographic, SARS-CoV-2 infection and vaccination, and health factors within population-based cohorts. Methods: Samples were collected from 9361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies and tested for SARS-CoV-2 antibodies. Cross-sectional sampling was undertaken jointly in April-May 2021 (TwinsUK, N=4256; ALSPAC, N=4622), and in TwinsUK only in November 2021-January 2022 (N=3575). Variation in antibody levels after first, second, and third SARS-CoV-2 vaccination with health, socio-demographic, SARS-CoV-2 infection, and SARS-CoV-2 vaccination variables were analysed. Using multivariable logistic regression models, we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection, and SARS-CoV-2 vaccination variables. Results: Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had threefold greater odds of SARS-CoV-2 infection over the next 6-9 months (OR = 2.9, 95% CI: 1.4, 6.0), compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK 'Shielded Patient List' had consistently greater odds (two- to fourfold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations. Conclusions: These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies. Funding: Antibody testing was funded by UK Health Security Agency. The National Core Studies program is funded by COVID-19 Longitudinal Health and Wellbeing - National Core Study (LHW-NCS) HMT/UKRI/MRC ([MC_PC_20030] and [MC_PC_20059]). Related funding was also provided by the NIHR 606 (CONVALESCENCE grant [COV-LT-0009]). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. The UK Medical Research Council and Wellcome (Grant ref: [217065/Z/19/Z]) and the University of Bristol provide core support for ALSPAC.


Vaccination against the virus that causes COVID-19 triggers the body to produce antibodies that help fight future infections. But some people generate more antibodies after vaccination than others. People with lower levels of antibodies are more likely to get COVID-19 in the future. Identifying people with low antibody levels after COVID-19 vaccination is important. It could help decide who receives priority for future vaccination. Previous studies show that people with certain health conditions produce fewer antibodies after one or two doses of a COVID-19 vaccine. For example, people with weakened immune systems. Now that third booster doses are available, it is vital to determine if they increase antibody levels for those most at risk of severe COVID-19. Cheetham et al. show that a third booster dose of a COVID-19 vaccine boosts antibodies to high levels in 90% of individuals, including those at increased risk. In the experiments, Cheetham et al. measured antibodies against the virus that causes COVID-19 in 9,361 individuals participating in two large long-term health studies in the United Kingdom. The experiments found that UK individuals advised to shield from the virus because they were at increased risk of complications had lower levels of antibodies after one or two vaccine doses than individuals without such risk factors. This difference was also seen after a third booster dose, but overall antibody levels had large increases. People who received the Oxford/AstraZeneca vaccine as their first dose also had lower antibody levels after one or two doses than those who received the Pfizer/BioNTech vaccine first. Positively, this difference in antibody levels was no longer seen after a third booster dose. Individuals with lower antibody levels after their first dose were also more likely to have a case of COVID-19 in the following months. Antibody levels were high in most individuals after the third dose. The results may help governments and public health officials identify individuals who may need extra protection after the first two vaccine doses. They also support current policies promoting booster doses of the vaccine and may support prioritizing booster doses for those at the highest risk from COVID-19 in future vaccination campaigns.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Risk Factors , Antibodies, Viral , London , Longitudinal Studies , Vaccination
2.
BMC Med ; 21(1): 25, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2196270

ABSTRACT

BACKGROUND: Predicting the likely size of future SARS-CoV-2 waves is necessary for public health planning. In England, voluntary "plan B" mitigation measures were introduced in December 2021 including increased home working and face coverings in shops but stopped short of restrictions on social contacts. The impact of voluntary risk mitigation behaviours on future SARS-CoV-2 burden is unknown. METHODS: We developed a rapid online survey of risk mitigation behaviours ahead of the winter 2021 festive period and deployed in two longitudinal cohort studies in the UK (Avon Longitudinal Study of Parents and Children (ALSPAC) and TwinsUK/COVID Symptom Study (CSS) Biobank) in December 2021. Using an individual-based, probabilistic model of COVID-19 transmission between social contacts with SARS-CoV-2 Omicron variant parameters and realistic vaccine coverage in England, we predicted the potential impact of the SARS-CoV-2 Omicron wave in England in terms of the effective reproduction number and cumulative infections, hospital admissions and deaths. Using survey results, we estimated in real-time the impact of voluntary risk mitigation behaviours on the Omicron wave in England, if implemented for the entire epidemic wave. RESULTS: Over 95% of survey respondents (NALSPAC = 2686 and NTwins = 6155) reported some risk mitigation behaviours, with vaccination and using home testing kits reported most frequently. Less than half of those respondents reported that their behaviour was due to "plan B". We estimate that without risk mitigation behaviours, the Omicron variant is consistent with an effective reproduction number between 2.5 and 3.5. Due to the reduced vaccine effectiveness against infection with the Omicron variant, our modelled estimates suggest that between 55% and 60% of the English population could be infected during the current wave, translating into between 12,000 and 46,000 cumulative deaths, depending on assumptions about severity and vaccine effectiveness. The actual number of deaths was 15,208 (26 November 2021-1 March 2022). We estimate that voluntary risk reduction measures could reduce the effective reproduction number to between 1.8 and 2.2 and reduce the cumulative number of deaths by up to 24%. CONCLUSIONS: Predicting future infection burden is affected by uncertainty in disease severity and vaccine effectiveness estimates. In addition to biological uncertainty, we show that voluntary measures substantially reduce the projected impact of the SARS-CoV-2 Omicron variant but that voluntary measures alone would be unlikely to completely control transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Child , Humans , Longitudinal Studies , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology
3.
Atmosphere ; 13(3):373, 2022.
Article in English | MDPI | ID: covidwho-1700075

ABSTRACT

The emergence of the new COVID-19 virus in Peru forced the Peruvian government to take swift measures to stop its proliferation. Consequently, a state of emergency was declared, which included mandatory social isolation and quarantine. This action meant that people would transit only in emergency cases. In this context, this study’s objective is to analyze the air quality changes in terms of the capital city’s NO2 levels due to these government decisions using satellite imagery data obtained from the Sentinel-5P satellite. One critical problem is the lack of spatially distributed air quality data. The Peruvian Meteorological Service only monitors air quality in Lima, the capital city. In addition, the air quality ground stations are not always functioning. Thus, there is a need to find new reliable methods to complement the official data obtained. One method of doing so is the use of remote sensing products, although the accuracy and applicability are yet to be determined;therefore, this is the article’s focus. A temporal and spatial analysis was developed quantitatively and qualitatively to measure the levels of NO2 in eighteen regions of Lima to contrast the quarantine’s effect on polluting gas emission levels. The measurements are also compared with the official Peruvian data from ground sensors using Pearson correlation coefficients, thus, showing that Sentinel-5P data can be used for changes in the mean daily concentration of NO2. We also developed the first version of an open platform that converts the satellite data into a friendly format for visualization. The results show NO2 ambient concentration reductions compared to 2019 of between 60% and 40% in the first two weeks and between 50% and 25% in the following two weeks of the COVID-19 lockdown. However, this effect could not be observed two months after the start of the lockdown.

SELECTION OF CITATIONS
SEARCH DETAIL